بررسی شرایط لازم برای وجود نقطه ثابت فازی برای نگاشت های فازی در متریک های کامل

thesis
abstract

هدف این پایان نامه بررسی قضایای وجودی نقطه ثابت فازی برای نگاشت های فازی روی فضاهای متریک کامل و معرفی برخی کاربردهای مربوطه با تمرکز بر نگاشت های فازی با مجموعه های $ ext{برش} -alpha $ ناتهی، محدب و فشرده است. اصل انقباض باناخ وجود نقطه ثابت منحصر به فرد را برای نگاشت های انقباضی با ثابت لیپشیتز در بازه $ left( 0,1 ight) $ روی فضاهای متریک ( غیر فازی ) کامل تضمین می کند. به عبارتی اگر $ (x,d) $ یک فضای متریک کامل بوده و $ t:x longrightarrow x $ نگاشتی باشد که برای یک ثابت $kin (0,1)$ ، برای هر $ x,yepsilon x $ در رابطه $d(tx,ty) leqslant kd(x,y) $ صدق نماید، آنگاه $ t $ دارای یک نقطه ثابت منحصر به فرد در $ x $ است. %cite{banach} . از جمله مسائل جالب که جای بحث دارد، بررسی وجود نقاط ثابت و احتمالا تعدد آنها برای نگاشت های لیپشیتز و نگاشت های انقباضی در فضاهای متریک کامل فازی خواهد بود که شامل مطالعه در تعمیم ها و تجریدهای متداول برای اصل انقباض باناخ می باشد. ما در این نوشتار به معرفی اعمال جبری روی مجموعه های فازی، متریک فازی و حسابان فازی پرداخته و برای حل چند معادله انتگرال و دیفرانسیل فازی خاص از قضایای نقطه ثابت استفاده خواهیم کرد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

قضایای نقطه ی ثابت برای نگاشت های فازی در فضاهای متریک کامل

در این پایان نامه قضایای نقطه ی ثابت را برای نگاشت های فازی در فضای متریک کامل بیان می کنیم. نتایج اصلی ما بعضی از نتایج معروف قضایای نقطه ی ثابت را تعمیم و گسترش می دهد. ابتدا قضیه ای را با استفاده از مفهوم w-فاصله که توسط کادا ات آل ارائه شده و سپس توسط آممیا و تاکاهاشی تعمیم یافته است را بیان کرده بعد از آن قضیه ای را بدون استفاده از پیوستگی نگاشت مجموعه مقدار برای نگاشت های فازی در فضای م...

15 صفحه اول

وجود نقطه ثابت برای نگاشتهای ناگسترده در فضاهای نرمدار فازی

در این رساله ضمن آشنایی با مفهوم نرم فازی تعاریف مهمی چون دنباله های همگرای فازی قوی، همگرای ضعیف فازی برشی و مجموعه های فشرده فازی برشی را در یک فضای نرمدار فازی ارایه میدهیم. همچنین مفاهیم ساختار نرمال فازی، ساختار نرمال asymptotic فازی، نگاشت های با گسترده فازی و فضای به طور یکنواخت محدب فازی را بیان می کنیم . سپس چندین قضیه مهم نقطه ثابت را برای نگاشت های ناگسترده فازی اثبات می نماییم.

15 صفحه اول

قضایای نقطه ثابت در فضاهای متریک فازی

در این پایان نامه با معرفی نگاشت های فازی انقباضی و نگاشت های بطور یکنواخت پیوسته به بررسی وجود و یکتایی نقاط ثابت در این نوع توابع می پردازیم. در ادامه با معرفی نگاشت های سازگار در فضاهای متریک فازی یک قضیه نقطه ثابت را برای چهار نگاشت سازگار از نوع (i) و (ii)مورد بررسی قرار می دهیم. در نهایت یک شکل فازی از قضیه نقطه ثابت لیف شیتز ارائه می گردد

15 صفحه اول

مطالعه فضاهای متریک مخروطی وقضایای نقطه ثابت برای نگاشت های انقباضی در فضاهای متریک مخروطی

اخیراً دو ریاضیدان چینی به اسم هانگ و ژانگ باجایگزین کردن فضای باناخ حقیقی به جای اعداد حقیقی، مفهوم متر مخروطی را معرفی کردند و قضایای نقطه ثابت را برای فضای متریک مخروطی، با استفاده ازایده های قضایای نقطه ثابت در فضای متریک کامل تعمیم دادند. در این پایان نامه، هدف بررسی یافته های این دو ریاضیدان چینی و ریاضیدانان دیگری است که فضای متریک مخروطی را از نظر خواص توپولوژیکی و خواص مخروطی مورد مطالع...

15 صفحه اول

بررسی قضایای نقطه ثابت و انطباقی برای نگاشت های تعمیم یافته -ضعیفاً انقباضی در فضاهایk -متریک

در این رساله ابتدا به بررسی نتایج و قضایای نقطه ثابت وانطباقی برای نگاشت های انقباضی در فضاهای k-متریک می پردازیم. همچنین نتایج تعمیم یافته وتوسعه یافته ای را ارائه می دهیم که اخیراً توسط چودهاری و متیا بدست آمده است. در ادامه قضایایی را مطرح می کنیم که کاربردهای فراوانی در کامپیوتر و ریاضی دارند. در آخر، به اثبات چند قضیه برای نگاشت های –g غیرنزولی در فضای k-متریک با توجه به وجود یا عدم وجود ش...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شاهد - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023